1. В свежевырытый пруд было запущено 8 кг малька белого амура и 2 кг малька окуня. Какое минимальное количество комбикорма (кг), который потреблял только малёк белого амура, использовал хозяин пруда, если в конце сезона он выловил 68 кг белого амура и 8 кг окуня? В 100 г комбикорма запасено 300 ккал энергии, а в 100 г биомассы консументов — 100 ккал. Переход энергии с одного трофического уровня на другой протекает в соответствии с правилом 10%.

Ответ запишите цифрами в виде целого числа, единицы измерения не указывайте. Например: 12.

2. В свежевырытый пруд было запущено 10 кг малька карпа и 5 кг малька щуки. Какое минимальное количество комбикорма (кг), который потреблял только малек карпа, использовал хозяин пруда, если в конце сезона он выловил 190 кг карпа и 47 кг щуки? В 100 г комбикорма запасено 300 ккал энергии, а в 100 г биомассы консументов — 100 ккал. Переход энергии с одного трофического уровня на другой протекает в соответствии с правилом 10 %.

Ответ запишите цифрами в виде целого числа, единицы измерения не указывайте. Например: 12

3. В свежевырытый пруд было запущено 3 кг малька карася и 2 кг малька щуки. Какое минимальное количество комбикорма (кг), который потреблял только малек карася, использовал хозяин пруда, если в конце сезона он выловил 53 кг карася и 6 кг щуки? В 100 г комбикорма запасено 300 ккал энергии, а в 100 г биомассы консументов — 100 ккал. Переход энергии с одного трофического уровня на другой протекает в соответствии с правилом 10 %.

Ответ запишите цифрами в виде целого числа, единицы измерения не указывайте. Например: 12

4. В свежевырытый пруд было запущено 20 кг малька плотвы и 2 кг малька окуня. Какое минимальное количество комбикорма (кг), который потреблял только малек плотвы, использовал хозяин пруда, если в конце сезона он выловил 30 кг плотвы и 7 кг окуня? В 100 г комбикорма запасено 300 ккал энергии, а в 100 г биомассы консументов — 100 ккал. Переход энергии с одного трофического уровня на другой протекает в соответствии с правилом 10 %.

Ответ запишите цифрами в виде целого числа, единицы измерения не указывайте. Например: 12.

5. В свежевырытый пруд было запущено 22 кг малька белого амура и 12 кг малька щуки. Какое минимальное количество комбикорма (кг), который потреблял только малёк белого амура, использовал хозяин пруда, если в конце сезона он выловил 172 кг белого амура и 24 кг щуки? В 100 г комбикорма запасено 300 ккал энергии, а в 100 г биомассы консументов — 100 ккал. Переход энергии с одного трофического уровня на другой протекает в соответствии с правилом 10%.

Ответ запишите цифрами в виде целого числа, единицы измерения не указывайте. Например: 12.

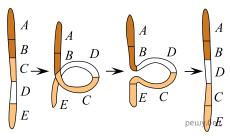
6. Определите тип изменчивости для каждого из предложенных примеров:

Пример

- А. зимой у сиамских кошек темнеет шерсть
- Б. у тетраплоидной ржи зерновки крупнее, чем у диплоидных растений
- В. рождение резус-положительного ребенка у резус-отрицательных родителей
- Г. при переселении жителя равнин в горы количество эритроцитов в его крови увеличилось
- Д. в результате скрещивания дигетерозиготных растений гороха с желтыми гладкими семенами появились потомки с зелеными морщинистыми семенами

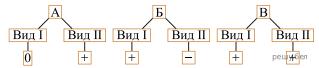
Тип изменчивости

- 1. мутационная
- 2. комбинативная
- 3. модификационная


Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца. Например: A1Б2B2Г3Д1.

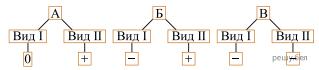
- **7.** Пять видов водорослей имеют следующие пределы выносливости по отношению к температуре окружающей среды:
 - 1) 15-55 °C;
 - 2) 25-45 °C;
 - 3) 20-30 °C:
 - 4) 3-18 °C:
 - 5) 10-40 °C.

Расположите данные виды в порядке убывания их экологической пластичности.


Ответ запишите иифрами, соблюдая полученную последовательность. Например: 52314.

- **8.** На рисунке изображена схема возникновения мутации. Выберите три признака, характеризующие данную мутацию:
 - 1. генная мутация;
 - 2. хромосомная мутация;
 - 3. такой тип мутаций называется делецией;
 - 4. такой тип мутаций называется инверсией;
- сопровождается поворотом участка хромосомы на 180°;
- 6. происходит изменение последовательности нуклеотидов в пределах одного гена.

Ответ запишите цифрами в порядке возрастания. Например: 135.


9. На схеме представлены типы биотических взаимоотношений А — В (символ «+» обозначает пользу от взаимодействия для вида, символ «-» — отрицательное влияние, символ «0» — отсутствие значимых последствий). Для каждого типа взаимоотношений подберите соответствующий пример:

- 1. маслёнок и лиственница:
- 2. вирус табачной мозаики и растение табака;
- 3. молодые сосны и берёзы в густом подросте смешенного леса;
- 4. рак отшельник и нереис, который живёт в раковине и питается остатками его пищи.

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв. Например: A152B2.

10. На схеме представлены типы биотических взаимоотношений А — В (символ «+» обозначает пользу от взаимодействия для вида, символ «-» — отрицательное влияние, символ «0» — отсутствие значимых последствий). Для каждого типа взаимоотношений подберите соответствующий пример:

- 1. подберёзовик и берёза;
- 2. рыжий и чёрный тараканы, живущие на одной территории;
- 3. крупные медузы и крабы, которые живут под зонтиками этих медуз;
- 4. щука и веслоногие рачки, поражающие жабры и кожу рыбы и питающиеся за её счёт.

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв. Например: A152B2.

11. Установите соответствие:

Пример

- А) на суше лягушки становятся добычей гадюки
- Б) корневые выделения дуба подавляют рост белой акации
- В) паутинные клещи высасывают сок из листьев винограда крабов
- Г) морские желуди поселяются на панцире крупных
- Д) птица ремез использует сухие волокна крапивы для строительства гнезда

Тип связей

- 1) топические
- 2) фабрические
- 3) трофические

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца. Например: A1Б2B2Г1.

12. Установите соответствие:

Пример

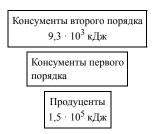
- А) лягушка питается мухами
- Б) лисицы на шерсти переносят цепкие плоды лопуха
- В) мелкие насекомые в жару концентрируются в тени дерновин ковыля
- Г) рак-отшельник поселяется в пустой раковине брюхоногого моллюска
- Д) личинки жука-нарывника поджидают пчел на цветках нивяника, затем прикрепляются к ним и таким образом попадают в ульи

Тип связей

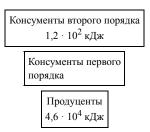
- 1) топические
- 2) форические
- 3) трофические

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца. Например: $A162B2\Gamma1$.

13. Дана пищевая цепь: дуб \rightarrow шелкопряд \rightarrow поползень \rightarrow ястреб. На первом трофическом уровне энергетический запас в виде чистой первичной продукции составляет $5 \cdot 10^4$ кДж энергии. На втором и третьем трофическом уровне на прирост биомассы организмы используют по 10 % своего пищевого рациона. Рассчитайте, сколько энергии (кДж) используют наприрост биомассы консументы третьего порядка, если на дыхание они расходуют 60 % и с экскрементами выделяют 35 % энергии рациона.


14. Экологическая пирамида охотничьего угодья имеет следующий вид:

Используя данные пирамиды, определите, разрешение на отстрел скольких волков (консументов второго порядка) можно выдать для восстановления экологического равновесия, если известно, что в теле одного волка сохраняется 400 кДж полученной энергии. Процесс трансформации энергии с одного трофического уровня на другой протекает в соответствии с правилом Р. Линлемана.


Ответ запишите цифрами в виде целого числа, единицы измерения не указывайте. Например: 12

15. Экологическая пирамида охотничьего угодья имеет следующий вид:

Используя данные пирамиды, определите, разрешение на отстрел скольких лисиц (консументов второго порядка) можно выдать для восстановления экологического равновесия, если известно, что в теле одной лисицы сохраняется 300 кДж полученной энергии. Процесс трансформации энергии с одного трофического уровня на другой протекает в соответствии с правилом Р. Линдемана.

Ответ запишите цифрами в виде целого числа, единицы измерения не указывайте. Например: 12. 16. Экологическая пирамида охотничьего угодья имеет следующий вид:

Используя данные пирамиды, определите, разрешение на отстрел скольких косуль (консументов первого порядка) можно выдать для восстановления экологического равновесия, если известно, что в теле одного консумента первого порядка сохраняется 200 кДж полученной энергии. Процесс трансформации энергии с одного трофического уровня на другой протекает в соответствии с правилом Р. Линдемана.

Ответ запишите цифрами в виде целого числа, единицы измерения не указывайте. Например: 12

17. Экологическая пирамида охотничьего угодья имеет следующий вид:

Используя данные пирамиды, определите, разрешение на отстрел скольких волков (консументов второго порядка) можно выдать для восстановления экологического равновесия, если известно, что в теле одного волка сохраняется 400 кДж полученной энергии. Процесс трансформации энергии с одного трофического уровня на другой протекает в соответствии с правилом Р. Линдемана.

Ответ запишите цифрами в виде целого числа, единицы измерения не указывайте. Например: 12.

18. Экологическая пирамида охотничьего угодья имеет следующий вид:

Используя данные пирамиды, определите, разрешение на отстрел скольких косуль (консументов первого порядка) можно выдать для восстановления экологического равновесия, если известно, что в теле одной косули сохраняется 200 кДж полученной энергии. Процесс трансформации энергии с одного трофического уровня на другой протекает в соответствии с правилом Р. Линдемана.

Ответ запишите цифрами в виде целого числа, единицы измерения не указывайте. Например: 12.